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Abstract

A support vector machines (SVM)-based two-stage method is proposed to simulate and predict the nonlinear dynamic

response of structures. In the first stage, an autoregressive moving average with exogenous input (ARMAX) model is used

to represent the acceleration response as the output of a single-input single-output (SISO) system and the least square

method is used to estimate the model parameters with which the linear acceleration response of the system can be simulated

and predicted. Then the linear velocity and displacement are estimated using numerical integration of the predicted

acceleration. In the second stage, by using the predicted linear responses (acceleration, velocity and displacement) and the

excitation to construct the input vector, the SVM is used to approximate nonlinear mapping from the input vector to

system output and the trained SVM can be used to simulate and predict the nonlinear dynamic response conveniently. The

nonlinear dynamic responses of a Duffing oscillator and a frame structure are simulated and predicted using the proposed

method as well as the neural network-based method. The results demonstrate that the SVM-based method provides

superior performance in generalization and accuracy and can be a powerful tool for nonlinear system simulation and

prediction.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

As a powerful tool for structural seismic design, control, identification, damage detection and health
monitoring, nonlinear structural response analysis has become a subject of intensive study for decades.
Among the various methods, time history analysis is the most frequently used numerical method. With
numerous studies having been carried out on it, this method has been used successfully in the fields of civil
engineering. But it is still a challenging topic because of the complexity of structural models and uncertainty in
excitation. For this reason, many researchers have attempted to develop other alternative methods to
circumvent the above difficulty, which gives rise to the development of the system identification-based
methods. In these methods, the nonlinear mapping of the given (or known) excitation to the corresponding
outputs is used to simulate and predict the nonlinear dynamic response. As for nonlinear system identification,
ee front matter r 2007 Elsevier Ltd. All rights reserved.

v.2007.09.054

ing author. Tel.: +86 23 6512 1991; fax: +86 23 6512 3511.

ess: yhvhson@cta.cq.cn (D. Yinfeng).

www.elsevier.com/locate/jsvi
dx.doi.org/10.1016/j.jsv.2007.09.054
mailto:yhvhson@cta.cq.cn


ARTICLE IN PRESS
D. Yinfeng et al. / Journal of Sound and Vibration 311 (2008) 886–897 887
numerous methods, excellent and comprehensive reviews of works on nonlinear system identification and its
applications in structural response simulation, health monitoring and loss estimation were given in Refs. [1–4].

In recent years, considerable attention has been focused on the neural network which has been proven to be
an efficient nonlinear approximator [5–8]. In extensive studies, the potential power of neural network was
represented; meanwhile, some difficulties were also emphasized [9–20]. First, the generalization ability of
neural network which was very sensitive to the number of training samples, network topology and learning
algorithms was still a critical issue. Second, in some studies, to simulate and predict a concerned response,
other measured responses were also required besides the excitation, i.e. to simulate and predict the acceleration
response the measured velocity and displacement was required as well as the excitation, which made the neural
network suitable for identification other than prediction of nonlinear systems. Last, for nonlinear systems, the
simulation and prediction of acceleration response was not studied as extensively as the displacement and it
was really a difficult problem. Furthermore, recent developments in vibration-based structural damage
detection and health monitoring have indicated the increasing importance of acceleration response and an
efficient method for simulating and predicting the acceleration response is thought to be useful for future
research.

Compared to the neural network, the support vector machine (SVM) developed by Vapnik [21] recently is
another powerful tool for general classification and regression problems which provides the advantage in
generalization and global optimization. As a classifier it was used widely for structural damage detection
[2,22,23], but as a nonlinear approximator its application was only reported in a few studies [24–26].

To address the above problems and attracted by the excellent performance of the SVM, we propose a SVM-
based two-stage method to simulate and predict the acceleration response of nonlinear systems and hope it to
be an efficient tool for structural damage detection and health monitoring.

The theory of neural network has been reported in extensive literatures, thus only the background of SVM
regression is summarized in the following section. Then the details of the proposed method are illustrated and
the results for the simulation and prediction of a Duffing oscillator and a 5-story frame structure are
demonstrated and discussed. As a counterpart to the proposed method, a three-layered neural network is also
used to simulate and predict the acceleration response of the nonlinear systems in the second stage. Lastly,
some notes on SVM for nonlinear system simulation and prediction are remarked.
2. Theory of SVM regression

Originally, SVM was designated to solve classification problems. However, with the introduction of
Vapnik’s e-insensitive loss function, SVM has been extended to solve nonlinear regression estimation problems
successfully [21].

In SVM regression the basic idea is to map the input data x into a high-dimensional feature space via a
nonlinear mapping F and to do linear regression in this space. The regression model is defined as y ¼ f(x)+e,
where x and y are, respectively the input and output, f(x) is the linear regression function defined in the
high-dimensional feature space, e is the independent random error. Given n sampling (input–output) pairs
G ¼ {(xi, yi), i ¼ 1,2,y, n}, SVM approximates the linear regression function f(x) given by

f ðxÞ ¼ oFðxÞ þ b, (1)

where F(x) is the high-dimensional feature space which is nonlinearly mapped from the input space x. Eq. (1)
is also called the decision function. The coefficients o and b are estimated by minimizing

RregðCÞ ¼ C
1

n

Xn

i¼1

L�ðyi; f ðxiÞÞ þ
1

2
ok k2; (2)

L�ðy; f ðxÞÞ ¼
y� f ðxÞj � � for jy� f ðxÞjX�;

0 otherwise:

�
(3)

Eq. (2) is called the regularized risk function where the first term Cð1=nÞ
Pn

i¼1L�ðyi; f ðxiÞÞ is the empirical error
(risk), and the second term 1

2
ok k2, on the other hand, is the regularization term. Eq. (3) is the e-insensitive loss
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function which provides the advantage of enabling one to use sparse data points (sampling pairs) to represent
the decision function given by Eq. (1). C is the regularized constant and it determines the trade-off between the
empirical risk and the regularization term. Increasing the value of C will result in the relative importance of
the empirical risk with respect to the regularization term to grow. e is called the tube size and it is equivalent to
the approximation accuracy placed on the training sampling pairs.

To obtain the estimations of o and b, Eq. (2) is transformed to the primal function by introducing the
positive slack variables xi and xi

* as follows:

Minimize Rðo; xð�ÞÞ ¼
1

2
ok k2 þ C

Pn
i¼1

ðxi þ x�i Þ

subjected to yi � oFðxiÞbp�þ xi;

oFðxiÞ þ b� yip�þ x�i ;

xðnÞX0:

(4)

Introducing Lagrange multipliers and exploiting the optimal constraints, Eq. (1) can be represented in explicit
form as

f ðx; ai; a
�
i Þ ¼

Xn

i¼1

ðai � a�i ÞKðx;xiÞ þ b: (5)

In Eq. (5), ai and ai* are the Lagrange multipliers. They satisfy ai� ai* ¼ 0, aiX0, and ai*X0, and are
obtained by maximizing the dual function of Eq. (4) in the following form:

Rðai; a
�
i Þ ¼

Xn

i¼1

yiðai � a�i Þ � �
Xn

i¼1

ðai þ a�i Þ �
1

2

Xn

i¼1

Xn

j¼1

ðai � a�i Þðaj � a�j ÞKðxi;xjÞ (6)

with the constraints
Pn

i¼1ðai � a�i Þ ¼ 0, 0paipC and 0pa�i pC.
Based on the Karush–Kuhn–Tucker (KKT) conditions of quadratic programming, only a certain number of

coefficients ðai � a�i Þ in Eq. (5) will assume non-zero values. The data points associated with them have
approximation errors equal to or larger than e and are referred to as support vectors. These are the data points
lying on or outside the e-bound of the decision function. According to Eq. (5), it is evident that support vectors
are the only elements of the data points that are used in determining the decision function as the coefficients
ðai � a�i Þ of other data points are all equal to zero. Generally, the larger the e, the fewer the number of support
vectors and thus the sparser the representation of the solution. However, a larger e can also depreciate the
approximation accuracy placed on the training points. In this sense, e is a trade-off between the sparseness of
the representation and closeness to the data.

Kðx; xiÞ is defined as the kernel function. The value of the kernel is equal to the inner product of two vectors
xi and xj in the feature space F(xi) and F(xj), that is, K(x, xi) ¼ F(xi)*F(xj). The elegance of using the kernel
function is that one can deal with feature spaces of arbitrary dimensionality without having to compute the
map F(x) explicitly. Any function satisfying Mercer’s condition can be used as the kernel function [21]. The
typical examples of kernel function are the polynomial kernel K(x,y) ¼ (x*y+1)d and the Gaussian kernel
K(x, y) ¼ exp(�1/d2(x�y)2) where d is the degree of polynomial kernel and d2 is the bandwidth of the
Gaussian kernel. The kernel parameter should be carefully chosen as it implicitly defines the structure of
the high-dimensional feature space F(x) and thus controls the complexity of the final solution. From the
implementation point of view, training SVM is equivalent to solving a linearly constrained quadratic
programming with the number of variables twice as that of the training data points. The sequential minimal
optimization algorithm proposed by Smola [27] is thought to be very effective in training SVM. Once the SVM
is trained, it can be used for simulation and prediction purpose according to Eq. (5).

Different from most of the traditional neural networks which implement the empirical risk minimization
principle, SVM implements the structural risk minimization principle to minimize an upper bound of the
generalization error rather than minimize the training error. This induction principle is based on the fact that
the generalization error is bounded by the sum of the training error and a confidence interval term that
depends on the Vapnik–Chervonenkis (VC) dimension. Based on this principle, SVM can achieve an optimum
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network structure by striking a right balance between the empirical error and the VC-confidence interval,
which eventually results in better generalization performance than the traditional neural networks. Another
merit of SVM is that the training process is equivalent to solving a linearly constrained quadratic
programming, which means the solution of SVM is unique, optimal and absent from local minima, unlike the
training process of the traditional neural networks which requires nonlinear optimization thus running the
danger of getting stuck in a local minima.

3. The two-stage method

Considering the excellent performance of SVM, we propose a SVM-based two-stage method to simulate
and predict the acceleration response of nonlinear systems. In the first stage, an autoregressive moving average
with exogenous input (ARMAX) model is used to represent the acceleration response as the output of a single-
input single-output (SISO) system, and the least square method [28] is used to estimate the model parameters
with which the linear acceleration response of the nonlinear system can be simulated and predicted based on
the initial conditions. Then the linear velocity and displacement components can be estimated using numerical
integration of the predicted acceleration. In the second stage, using the predicted linear responses
(acceleration, velocity and displacement) and the excitation to construct input vector, SVM is used to
approximate nonlinear mapping from the input to output and the trained SVM can be used to simulate and
predict the nonlinear dynamic response conveniently. Fig. 1 presents the diagram of the method and it can be
summarized in the following steps:
1.
 Use ARMAX (p, q) model to represent the concerned acceleration response of the nonlinear system
given by

yðkÞ ¼
Xp

i¼1

fiyðk � iÞ þ
Xq

i¼1

yixðk � iÞ þ xðkÞ þ eaðkÞ; (7)

in which the variables y(k) and x(k) are the output and input of the system sampled at the time instant
t ¼ kDt with Dt as the sampling interval. fi and yi are the autoregressive and moving average coefficients,
respectively. ea(k) is measurement noise.
2.
 Use least square method [28] to estimate the model parameters fi and yi.
Fig. 1. Diagram of the SVM-based two-stage method.
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3.
 The linear acceleration response ya(k) is predicted using fi, yi and the initial conditions. Then, the linear
velocity yv(k) and displacement yd(k) can be estimated using numerical integration of ya(k).
4.
 Use ya(k�1), yv(k�1), yd(k�1), x(k�1) and x(k) to construct input vector X(k) corresponding to the output
y(k) and train SVM with the input–output pairs G{(X(k), y(k)), i ¼ 1,2,y, n}. Then, the acceleration
response of the nonlinear system can be simulated and predicted with the input vector X(k) and the trained
SVM according to Eq. (5).

It has been shown by Pandit [29] and Anderson et al. [30,31] that an ARMAX model of order (2m, 2m�1) is
equivalent to a system with m degrees of freedom (dof), thus, the order of ARMAX model can be determined
according to the dof of the system.

4. Results and discussions

To demonstrate the performance of the proposed method, two examples are given here, i.e. the acceleration
responses of a Duffing oscillator and a 5-story frame structure are simulated and predicted. In both examples,
the acceleration responses to the acceleration record El Centro (1940, N–S) in Fig. 2(a) are first used to train
the SVM and then with the trained SVM the acceleration responses to an artificial wave in Fig. 2(b) are
predicted to explore the prediction and generalization performance of the method. As a counterpart to the
proposed method, a three-layered neural network (NN) is also used in the second stage. The numbers of
neurons for the three layers are 30, 30 and 1, respectively. The activation functions are linear functions for the
first and the third layers and radial basis function (RBF) for the second layer. For the proposed method, only
the 500 sampling pairs for the first 10 s are used to train the SVM, while for the NN-based method all the 2000
sampling pairs are used to train the NN.

4.1. Example 1: Duffing oscillator

As a classic nonlinear model, the Duffing oscillator has been studied extensively in the literature. The
motion equation is given by m €yþ c _yþ k1yþ k3y3 ¼ �m €xðtÞ where €y, _y and y are the acceleration, velocity
and displacement responses, respectively and the input acceleration is denoted as €xðtÞ. The system para-
meters used in this example are chosen as follows: mass m ¼ 1 kg damping coefficient c ¼ 0.316N sm�1, linear
stiffness coefficient k1 ¼ 10Nm�1 and cubic stiffness coefficient k3 ¼ �160Nm�3. With zero initial
conditions, its responses are calculated by applying the fourth-order Runge–Kutta method using MATLAB
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Fig. 2. Accelerograms of the two inputs: (a) El Centro (1940, N–S) and (b) artificial wave.
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software and the time step is set as 0.02 s. In the first stage of the SVM- and the NN-based methods, the
ARMAX (2, 1) model is used to predict the linear response components for the Duffing oscillator is a
sdof system.

It is evident that for a Duffing oscillator the restoring force F(y) is a third-order polynomial function of the
displacement y, i.e. F(y) ¼ k1y+k3y

3. Fig. 3 illustrates the displacement, restoring force and restoring force vs.
displacement curves of the Duffing oscillator corresponding to the inputs in Fig. 2 with the same system
parameters as mentioned above. We can see that there is a slight difference between the two curves due to the
distinctive properties (amplitude and frequency properties) of the two inputs, and the maximum displacement
response to El Centro (1940, N–S) is lager than that to the artificial wave. This difference is what we expect,
for this difference can be exploited to evaluate the prediction and generalization ability of the two methods.

The actual and predicted accelerations corresponding to various inputs and methods are shown in Fig. 4.
From visual inspection, it can be seen that both methods provide pretty good performance in generalization
and prediction as a whole. The SVM-based method slightly outperforms the NN-based method in prediction.
The generalization ability for the SVM-based method is obviously better, for it uses only 500 sampling pairs to
train the SVM, while in the NN-based method 2000 sample pairs are used to train the NN.

Fig. 5 presents the statistical distribution of the actual and the predicted acceleration responses in Fig. 4. We
can see that the distribution patterns of predicted accelerations are similar to those of actual accelerations, but
the results of the SVM-based method show a far better agreement than the results of the NN-based method. In
Fig. 3. Responses of the Duffing oscillator corresponding to the two inputs given in Fig. 2 with the same system parameters:

(a) displacement; (b) restoring force; (b) restoring force vs. displacement curves.
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Fig. 4. Actual and predicted acceleration responses of the Duffing oscillator corresponding to various inputs and methods: (a) El Centro

(1940, N–S) and SVM-based method; (b) El Centro (1940, N–S) and NN-based method; (c) artificial wave and SVM-based method;

(d) artificial wave and NN-based method.
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NN cases, the maximum probability is relatively higher than in cases of SVM and actual response which
indicates that the acceleration response predicted using NN-based method is somewhat smaller than the actual
response, and the prediction ability of NN-based method is poorer than SVM-based method. In cases of El
Centro (1940, N–S), the maximum probability is smaller in comparison to the artificial wave, which is mainly
because the acceleration response to artificial wave is much smaller than to El Centro (1940, N–S) after 20 s as
can be seen from Fig. 4.

The cumulative energy defined as the cumulative sum of the squared acceleration is an important quantity
to describe the non-stationary properties of structure response, thus it is used in this study to evaluate the
agreement between the actual and the predicted accelerations. The cumulative energy curves corresponding
to the actual and the predicted accelerations in Fig. 4 are presented in Fig. 6 which shows more clearly than
Figs. 4 and 5 that the SVM-based method performs better than the NN-based method in prediction
and generalization. For the NN-based method, the agreement in Figs. 6(b, d) is somewhat worse than in
Figs. 4(b, d) and 5(a, b), while for the SVM-based method the agreement is quite well in all cases.
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4.2. Example 2: 5-story frame structure

In this example, we use the proposed method to simulate and predict the acceleration response of a
reinforced concrete frame [32]. The frame is 5-story, 3-bay plane structure. The height for the first floor is 5.5
and 3.3m for the second–fifth floors, the width for each bay is 6m. The inelastic responses of the frame are
analyzed using the computer program IDARC 2D [33] with the trilinear hysteretic model. It is found that the
first floor is the weak story of the structure, thus the acceleration responses of the first floor are selected as the
target to perform simulation and prediction. In the first stage of the proposed method, the ARMAX model of
order (10, 9) is used for the system is a 5-dof system.
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This example is undoubtedly more complicated than the first one due to the hysteresis properties of the
structure. Fig. 7 shows the story shear force vs. story drift curves of the first floor corresponding to the inputs
in Fig. 2. The two curves are obviously different as we expect, and the maximum displacement is observed in
case of artificial wave. But with the same inputs, in case of the first example, maximum displacement is
observed in case of El Centro (1940, N–S). This is mainly because the frequency properties of the two inputs
and the dynamic properties (e.g., natural frequency) of the two systems are different. More details regarding
this point can be found in Ref. [32].

Fig. 8 demonstrates the actual and the predicted accelerations of the first floor corresponding to various
inputs and methods. From visual inspection, it is clear that the prediction results of both methods are in good
agreement with the actual responses and there is no significant difference between them.

Fig. 9 shows the statistical distribution of the actual and the predicted acceleration responses of the first
floor. It also presents excellent agreement between the prediction results and the actual responses, but also
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indicates that the SVM-based method performs relatively better than the NN-based method. In NN cases, as
same as what is shown in Fig. 5, the maximum probability is relatively higher than in cases of SVM due to the
poorer prediction ability of NN-based method. And in cases of El Centro (1940, N–S), the maximum
probability is smaller in comparison to the artificial wave, which is mainly because the acceleration response to
artificial wave is much smaller than to El Centro (1940, N–S) after 20 s due to the difference of the two inputs.

The cumulative energy curves corresponding to the actual and the predicted accelerations are illustrated in
Fig. 10. It shows, more clearly than Figs. 8 and 9, that the SVM-based method performs much better than the
NN-based method. The results of the SVM-based method are very close to the actual results, but the results of
the NN-based method are about 5–15 percent smaller than the actual results.
5. Conclusions

In this study, a SVM-based two-stage method is proposed to simulate and predict the acceleration response
of nonlinear structures. The method is applied to a Duffing oscillator and a 5-story frame structure and the
results show that the method is efficient and its generalization and prediction abilities are quite well. This is
mainly because that SVM converts the nonlinear regression in low-dimensional space to the linear regression
in high-dimensional feature space and carries out the regression estimation under the structural risk
minimization principle. Although we do not compare the proposed method with other methods suggested in
the literature, the prediction precision and generalization ability of the method is sufficient for practical
purpose. We find that the cumulative energy, as an important quantity to describe the non-stationary
properties of structure response, is a sensitive index to evaluate the performance of prediction methods. It is
also to be noted that for nonlinear systems they may present the possibility of multiple solutions, jump
phenomena and chaotic properties due to the bifurcations of equilibrium positions of them, and the initial
conditions and the nature of excitation will determine which of these solutions will represent the actual
response of them. Thus in the first stage of the proposed method the linear response components should be
predicted based on the actual initial conditions, otherwise prediction errors will appear in the first several
cycles of response. For example, in cases of non-zero initial conditions the zero initial conditions assumption
will yield considerable errors in the first 2 or 3 cycles of response. Though the proposed method has the
potential ability to deal with multiple solutions problems, the training samples should be selected as properly
as to cover the nature of possible excitation thoroughly. Really, it is an important issue being studied. Lastly,
for SVM is performed in high-dimensional space, the efficient training algorithm of SVM for a large scale of
data is an important issue for future research.
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